A general, mass-preserving Navier-Stokes projection method

نویسنده

  • David Salac
چکیده

The conservation of mass is a common issue with multiphase fluid simulations. In this work a novel projection method is presented which conserves mass both locally and globally. The fluid pressure is augmented with a time-varying component which accounts for any global mass change. The resulting system of equations is solved using an efficient Schur-complement method. Using the proposed method four numerical examples are performed: the evolution of a static bubble, the rise of a bubble, the breakup of a thin fluid thread, and the extension of a droplet in shear flow. The method is capable of conserving the mass even in situations with morphological changes such as droplet breakup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

We propose a novel second order in time numerical scheme for Cahn-Hilliard-NavierStokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, ...

متن کامل

An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner

The projection method is a widely used fractional-step algorithm for solving the incompressible Navier–Stokes equations. Despite numerous improvements to the methodology, however, imposing physical boundary conditions with projection-based fluid solvers remains difficult, and obtaining high-order accuracy may not be possible for some choices of boundary conditions. In this work, we present an u...

متن کامل

An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations

The computation of compressible flows becomes more challenging when the Mach number has different orders of magnitude. When the Mach number is of order one, modern shock capturing methods are able to capture shocks and other complex structures with high numerical resolutions. However, if the Mach number is small, the acoustic waves lead to stiffness in time and excessively large numerical visco...

متن کامل

A Transformation of the Navier-Stokes Equations for Efficient Fluid Animation

Computational efficiency is an important theme in fluid simulation since its heavy computational load is burden to designers. Our objective is to proposed a grid based method satisfying divergence free property without the projection method. The paper transforms the momentum conservation part of the Navier-Stokes equations to vector potential based equations. Our method do not need any global o...

متن کامل

On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations

Projection methods are an efficient tool to approximate strong solutions of the incompressible Navier-Stokes equations; as a major deficiency, these methods often suffer from reduced accuracy of pressure updates caused by nonphysical boundary data. After a short review, quantitative control of arising boundary layers in Chorin’s scheme is given under realistic regularity assumptions. Then, we p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2016